Department of Medical Biotechnology


dr hab. Agnieszka Fiszer,
prof. ICHB PAN

 Agnieszka Fiszer


dr Adam Ciesiołka

dr Grzegorz Figura

dr Magdalena Jazurek-Ciesiołka

dr Emilia Kozłowska

dr Paweł Świtoński
obecnie w Departments of Neurology, Neurobiology, and Cell Biology; Duke Center for Neurodegeneration and Neurotherapeutics; Duke University School of Medicine, Durham, USA

dr Magdalena Woźna-Wysocka

Adam Ciesiołka Grzegorz Figura Magdalena Jazurek-Ciesiołka Emilia Kozłowska

Technical staff:

mgr Paula Sobieszczańska


PhD Students:

mgr Agata Ciołak

mgr Paweł Joachimiak

Agata Ciołak


Exemplary allele-selective activity of A2 oligonucleotide (so-called art-miRNA) in cellular model of human DRPLA fibroblasts and mechanistic model of these molecules activity in RNA interference pathway
Fig. 1 Exemplary allele-selective activity of A2 oligonucleotide (so-called art-miRNA) in cellular model of human DRPLA fibroblasts and mechanistic model of these molecules activity in RNA interference pathway


Molecular characteristics of DRPLA iPSC line generated in the Department
Fig.2 Molecular characteristics of DRPLA iPSC line generated in the Department


Fig. 3 Analyzed network of interactions of repeat-associated competing endogenous RNAs (race-RNAs)


Fig. 4 Visualization of HTT transcripts in human HD neurons


Fig. 5 Proposed pathomechanisms in SCA3, including RAN translation

Działalność badawcza


Key words:

triplet repeat expansion diseases, Huntington’s disease, pathogenesis, RNA toxicity, cellular models, mouse models, experimental treatment, RNA interference technology, iPSC technology, microRNA biogenesis and function


Research area:

Research performed in our Department has been focusing on trinucleotide repeats sequences and their expansion related to human neurological diseases. This group of diseases includes: myotonic dystrophy type 1 (DM1), Friedreich’s ataxia (FRDA) and polyglutamine (polyQ) diseases: Huntington’s disease (HD) and several spinocerebellar ataxias (SCA).


Main research topics carried out in our Department are:


  • screening for RNA and protein toxicity markers in polyglutamine diseases,
  • establishment and characteristics of new cellular and mouse models,
  • investigation of proteins interaction with trinucleotide repeats tracts,
  • testing of therapeutic strategies targeting CAG repeats regions in neuronal cells and mouse models,
  • unravelling mechanisms responsible for siRNA and miRNA silencing of gene expression,
  • evaluation of the miRNA role in pathogenesis of polyglutamine diseases and Friedreich’s ataxia.

Ongoing research projects:

  • Identification of CAG repeat-binding proteins and imaging RNA-protein interactions in cells (NCN, OPUS)
  • The role of microRNA in iron metabolism of Friedreich's ataxia (NCN, OPUS)
  • Comprehensive analysis of the therapeutic potential of oligonucleotides for the treatment of polyglutamine diseases (NCN, SONATA)
  • RAN translation at CAG repeats in spinocerebellar ataxia type 3 (NCN, SONATA).
  • MicroRNA profiling in cellular models of Huntington’s disease generated using iPSC technology (NCN, PRELUDIUM)
  • Rescuing Friedreich’s ataxia phenotype by transcription progression (NCN, MINIATURA)


Selected publications:

Ciolak A, Krzyzosiak WJ, Kozlowska E, Fiszer A.
Generation of human iPS cell line IBCHi002-A from spinocerebellar ataxia type 3/Machado-Joseph disease patient's fibroblasts.
Stem Cell Res. 2020 Apr 20;45:101796. doi: 10.1016/j.scr.2020.101796.

Dabrowska M, Ciolak A, Kozlowska E, Fiszer A, Olejniczak M.
Generation of New Isogenic Models of Huntington's Disease Using CRISPR-Cas9 Technology.
Int J Mol Sci. 2020 Mar 8;21(5). pii: E1854. doi: 10.3390/ijms21051854.

Misiorek JO, Schreiber AM, Urbanek-Trzeciak MO, Jazurek-Ciesiołka M, Hauser LA, Lynch DR, Napierala JS, Napierala M.
A Comprehensive Transcriptome Analysis Identifies FXN and BDNF as Novel Targets of miRNAs in Friedreich's Ataxia Patients.
Mol Neurobiol. 2020 Apr 14. doi: 10.1007/s12035-020-01899-1

Stoyas CA, Bushart DD, Switonski PM, Ward JM, Alaghatta A, Tang M, Niu C, Wadhwa M, Huang H, Savchenko A, Gariani K, Xie F, Delaney JR, Gaasterland T, Auwerx J, Shakkottai VG, La Spada AR. Nicotinamide Pathway-Dependent Sirt1 Activation Restores Calcium Homeostasis to Achieve Neuroprotection in Spinocerebellar Ataxia Type 7.
Neuron. 105(4):630-644.e9 (2020)

Kozlowska E, Ciolak A, Olejniczak M, Fiszer A.
Generation of human iPS cell line IBCHi001-A from dentatorubral-pallidoluysian atrophy patient's fibroblasts
Stem Cell Res. 39:101512 (2019)

Ward JM, Stoyas CA, Switonski PM, Ichou F, Fan W, Collins B, Wall CE, Adanyeguh I, Niu C, Sopher BL, Kinoshita C, Morrison RS, Durr A, Muotri AR, Evans RM, Mochel F, La Spada AR.
Metabolic and Organelle Morphology Defects in Mice and Human Patients Define Spinocerebellar Ataxia Type 7 as a Mitochondrial Disease.
Cell Rep. 26(5):1189-1202.e6 (2019)

Kulcenty K, Wroblewska JP, Rucinski M, Kozlowska E, Jopek K, Suchorska WM.
MicroRNA Profiling During Neural Differentiation of Induced Pluripotent Stem Cells.
Int J Mol Sci. 20(15): E3651 (2019)

Witkos T, Krzyzosiak WJ, Fiszer A, Koscianska E.
A potential role of extended simple sequence repeats in competing endogenous RNA crosstalk.
RNA Biol. 15(11):1399-1409 (2018)

Ciesiolka A, Jazurek M, Drazkowska K, Krzyzosiak WJ.
Structural Characteristics of Simple RNA Repeats Associated with Disease and their Deleterious. Protein Interactions.
Front Cell Neurosci. 11, 97 (2017)

Jazurek M, Ciesiolka A, Starega-Roslan J, Bilinska K, Krzyzosiak WJ.
Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases.
Nucleic Acids Res. 44(19):9050-9070 (2016)

Fiszer A, Wroblewska JP, Nowak BM, Krzyzosiak WJ.
Mutant CAG Repeats Effectively Targeted by RNA Interference in SCA7 Cells.
Genes (Basel). 17;7(12) (2016)

Fiszer A, Ellison-Klimontowicz ME, Krzyzosiak WJ.
Silencing of genes responsible for polyQ diseases using chemically modified single-stranded siRNAs.
Acta Biochim Pol. 63(4):759-64 (2016)

Jaworska E, Kozlowska E, Switonski PM, Krzyzosiak WJ.
Modeling simple repeat expansion diseases with iPSC technology.
Cell Mol Life Sci. 73(21):4085-100 (2016)